Power-Electronics-Enabled Transient Stabilization of Power Systems
نویسنده
چکیده
Transient stability of electric energy grids is defined as the ability of the power system to remain in synchronism during large disturbances. If the grid is not equipped with controllers capable of transiently stabilizing system dynamics, large disturbances could cause protection to trigger disconnecting the equipment and leading further to cascading system-wide blackouts. Today’s practice of tuning controllers generally does not guarantee a transiently stable response because it does not use a model for representing system-wide dynamic interactions. To overcome this problem, in this thesis we propose a new systems modeling and control design for provable transient stabilization of power systems against a given set of disturbances. Of particular interest are fast power-electronically-controlled Flexible Alternating Current Transmission System (FACTS) devices which have become a new major option for achieving transient stabilization. The first major contribution of this thesis is a framework for modeling of general interconnected power systems for very fast transient stabilization using FACTS devices. We recognize that a dynamic model for transient stabilization of power systems has to capture fast electromagnetic dynamics of the transmission grid and FACTS, in addition to the commonly-modeled generator dynamics. To meet this need, a nonlinear dynamic model of general interconnected electric power systems is derived using time-varying phasors associated with states of all dynamic components. The second major contribution of this thesis is a two-level approach to modeling and control which exploits the unique network structure and enables preserving only relevant dynamics in the nonlinear system model. This approach is fundamentally based on separating: a) internal dynamics model for ensuring stable local response of components; b) systemlevel model in terms of interaction variables for ensuring stability of the system when the components are interconnected. The two levels can be controlled separately which minimizes the need for communication between controllers. Both distributed and cooperative ectropy-based controllers are proposed to control the interaction-level of system dynamics. Proof of concept simulations are presented to illustrate and compare the promising performance of the derived controllers. Some of the most advanced FACTS industry installations are modeled and further generalized using our approach.
منابع مشابه
Dynamic Harmonic Modeling and Analysis of VSC-HVDC Systems
Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs a Dynamic Harmonic Domain (DHD) based framework for dynamic harmonic analysis of VSC-HVDC systems. These systems are wide...
متن کاملA Novel Approach to Trace Time-Domain Trajectories of Power Systems in Multiple Time Scales Based Flatness
This paper works on the concept of flatness and its practical application for the design of an optimal transient controller in a synchronous machine. The feedback linearization scheme of interest requires the generation of a flat output from which the feedback control law can easily be designed. Thus the computation of the flat output for reduced order model of the synchronous machine with simp...
متن کاملOptimal Adjustment of Three-Term Controller and Two-Term Compensator Performances in Hydro Power Systems for Load Frequency Control
An important issue with respect to the hydraulic power systems is the frequency stabilization. To design Load Frequency Control (LFC) with high efficiency, control parameters need to be adjusted so that the system frequency remains stable even under changeable conditions. Controlling the frequency and changes in the turbine time constant requires that three term control parameters of Proportion...
متن کاملSimultaneous Control of Active and Reactive Powers of Vanadium Redox Flow Battery Systems in Flexible Microgrids
This paper discusses the control of flexible microgrids, consisting of a Redox Flow Batteries (RFB) and a new power conditioning system (PCS) for the RFB. Considering the importance of energy storage, this study is essential in power systems that are developed cautiously. RFB is connected to power system by a DC/DC or DC/AC converter to produce a DC voltage. It is very important that this conve...
متن کاملAn Improved Control Method Based on Modified Delta-Sigma Modulator for Buck Converter
This paper proposes an improved control method based on modified Delta-Sigma Modulator (DSM) to enhance transient response and improve harmonic contents of buck DC-DC converter. The main advantages of the proposed method are improving the output voltage frequency spectrum, correction of the output voltage harmonic contents and sideband harmonics, reduction of switching noise peaks at the output...
متن کامل